On the Moments of the Multiple Correlation Coefficient in Samples from Normal Population

By D. P. Banerjee

Poona University

Wishart (1930) has found the mean and the second moment coefficient of the multiple correlation coefficient in samples from a normal population when $b=1,2,3$ and then assumed that the result is probably true without any restrictions as to whether $2 b$ is even or odd. Also he has pointed out the difficulties in finding the mean and the standard deviation of the multiple correlation coefficient. Here I have found the m-th moment both of the square of the multiple correlation coefficient and also of the multiple correlation coefficient for unrestricted a, b. I have also found a method to find the mean and the second moment of the multiple correlation coefficient approximately.

Fisher's (1928) general distribution for the multiple correlation coefficient is

Hence

$$
\begin{array}{r}
d f=\frac{\mid a+b-1}{\underline{a-1} \mid \underline{\mid b-1}} \cdot\left(1-\rho^{2}\right)^{a^{4} b} F\left(a+b, a+b, a, \rho^{2} R^{2}\right) \times \\
\left(R^{2}\right)^{a-1}\left(1-R^{2}\right)^{b-1} d\left(R^{2}\right) .
\end{array}
$$

$$
\begin{aligned}
& \mu_{m}^{\prime}\left(R^{2}\right)=\frac{\mid a+b-1}{|\underline{a-1}| \underline{b-1}}\left(1-\rho^{2}\right)^{a+b} \sum_{0}^{a} \frac{(a+b)_{s}^{2}}{\mid \underline{s}(a)_{s}} \rho^{2 s} \times \\
& \int_{0}^{1} x^{a+s+m-1}(1-x)^{b-1} d x \\
& =\frac{\mid a+b-1}{\mid a-1-b-1} \cdot\left(1-\rho^{2}\right)^{a+h} \sum_{0}^{a} \frac{(a+b)^{2}}{\mid S(a)_{s}} \rho^{2 x} \times \\
& \frac{\Gamma(a+s+m) \Gamma(b)}{\Gamma(a+m+b+s)} \text { where }(a)_{s} \\
& =a(a+1) \ldots(a+s-1)
\end{aligned}
$$

and the term by term integration is permissible as the Hypergeometric function is uniformly convergent if $0 \leqslant \rho^{2}<1$.

From (11) and (12) we have

$$
\begin{aligned}
2-3 x R(x) & +\left(x^{2}-1\right) R^{2}(x)>2-3 x \cdot \frac{x^{2}+2}{x^{3}+3 x} \\
& +\left(x^{2}-1\right) \cdot \frac{x}{x^{2}+1} \cdot \frac{x^{3}+5 x}{x^{3}+6 x^{2}+3}
\end{aligned}
$$

which is easily seen to be >0 for sufficiently large $x>0$.
Hence

$$
[\lambda(x)-x][2 \lambda(x)-x]-1>0
$$

which shows that the third moment of X, about its mean which is a measure of Skewness has the same sign as $E(X)$.

References

1. Birnbaum, Z. W. .. Annals of Math. Statistics, 1950, 21, 272-79.
2. -..... Ibid., 1942, 13, 245-46.
3. Gordan, R. D. .. lbid., 1941, 12, 364-66.
4. Kendall .. Advanced Theory of Statistics, 1, 129-30.

Hence

$$
\begin{aligned}
\mu_{m}^{\prime}\left(R^{2}\right)= & \frac{(a+m-1) \ldots a}{(a+b+m-1) \ldots(a+b)}\left(1-\rho^{2}\right)^{a+b} \\
& \quad \times{ }_{3} F_{2}\left(a+b, a+b, a+m, a, a+m+b, \rho^{2}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& z^{\alpha_{1}+1} \cdot{ }_{3} F_{2}\left(a_{1}+1, a_{2}, a_{3}, \rho_{1}, \rho_{2}, z\right) \\
& =\frac{z^{2}}{a_{1}} \frac{d}{d_{z}} z^{\alpha_{1}}{ }_{3} F_{2}\left(a_{1}, a_{2}, a_{3}, \rho_{1}, \rho_{2}, z\right)
\end{aligned}
$$

We have

$$
\begin{gathered}
\mu_{m}^{\prime}\left(R^{2}\right)=\frac{\left(1-\dot{\rho}^{2}\right)^{a+b}}{(a+b) \ldots(a+b+m+1)} \times \\
D^{m} F\left(a+b, a+b, a+m+b, \rho^{2}\right)
\end{gathered}
$$

where

$$
D=\frac{\rho^{3}}{2} \frac{\partial}{\partial \rho}
$$

Similarly we can prove that

$$
\begin{gathered}
\mu_{m}{ }^{\prime}(R)=\frac{\mid a+b-1}{\underline{a-1}}\left(1-\rho^{2}\right)^{a+b} \frac{\Gamma\left(a+\frac{m}{2}\right)}{\Gamma\left(a+b+\frac{m}{2}\right)} \times \\
=\frac{\left(1-\rho^{2}\right)^{a+l} \Gamma\left(a+\frac{m}{2}\right)}{\Gamma\left(a+b+\frac{m}{2}\right)} D^{m} F\left(a+b+\frac{m}{2}, a+b, \frac{1}{2}, \rho^{2}\right)
\end{gathered}
$$

when b is integer.
Putting

$$
\begin{gathered}
m=1 \\
\mu_{1}^{\prime}(R)=\bar{R}=\frac{\left\lvert\, a+b-1 \Gamma\left(a+\frac{1}{2}\right)\right.}{\overline{a-1} \Gamma a+b+\frac{1}{2}}\left(1-\rho^{2}\right)^{a+b} \times \\
{ }_{3} F_{2}\left(a+b, a+b, a+\frac{1}{2}, \overline{a,} a+b+\frac{1}{2}, \rho^{2}\right)
\end{gathered}
$$

when

$$
\rho=0, \bar{R}=\frac{a+b-1 \cdot \Gamma\left(a+\frac{1}{2}\right)}{a-1 \Gamma\left(a+b+\frac{1}{2}\right)}
$$

which agrees with Wishart's result.

Example.-Let us consider the example considered by Pearson (1930). Let $\rho^{2}=\cdot 5, a=3, b=47$.

$$
\begin{aligned}
& \qquad \begin{aligned}
\bar{R} & =\frac{49 \Gamma 3 \cdot 5}{2 \Gamma 50 \cdot 5}(\cdot 5)^{50}{ }_{3} F_{2}(50,50,3 \cdot 5,3,50 \cdot 5, \cdot 5) \\
& =\frac{49 \Gamma 3 \cdot 5}{2 \Gamma 50 \cdot 5}(\cdot 5)^{50}{ }_{3} F_{2}(50,50,3 \cdot 5,3 \cdot 5,51, \cdot 6) \\
= & \frac{149 \Gamma 3 \cdot 5}{2 \Gamma 50 \cdot 5}(\cdot 5)^{50} \mathrm{~F}(50,50,51, \cdot 6)=\cdot 4 \text { approximately. } \\
\quad & \text { References }
\end{aligned} \\
& \begin{array}{l}
\text { Wishart, J. } \\
\text { Fisher, R. A. } \\
\text { Pearson, K. }
\end{array} \quad \begin{array}{l}
\text {. }
\end{array} \quad \text { Biometrica, 1930, 22, } 224 .
\end{aligned}
$$

